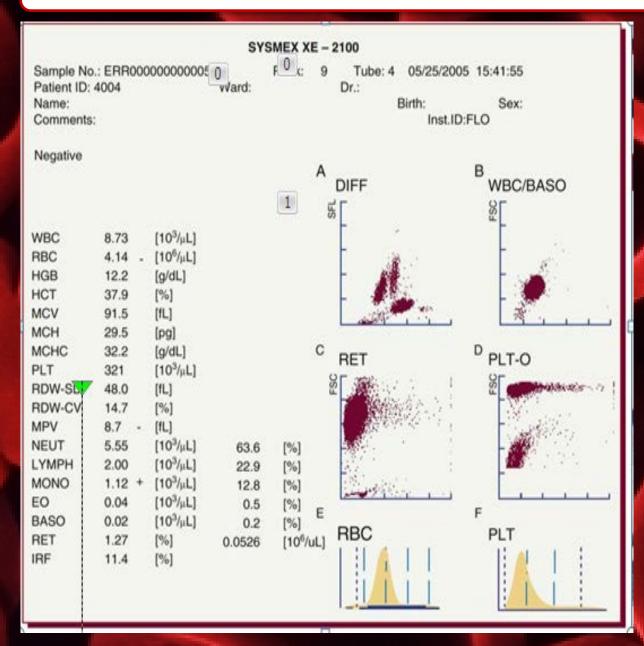
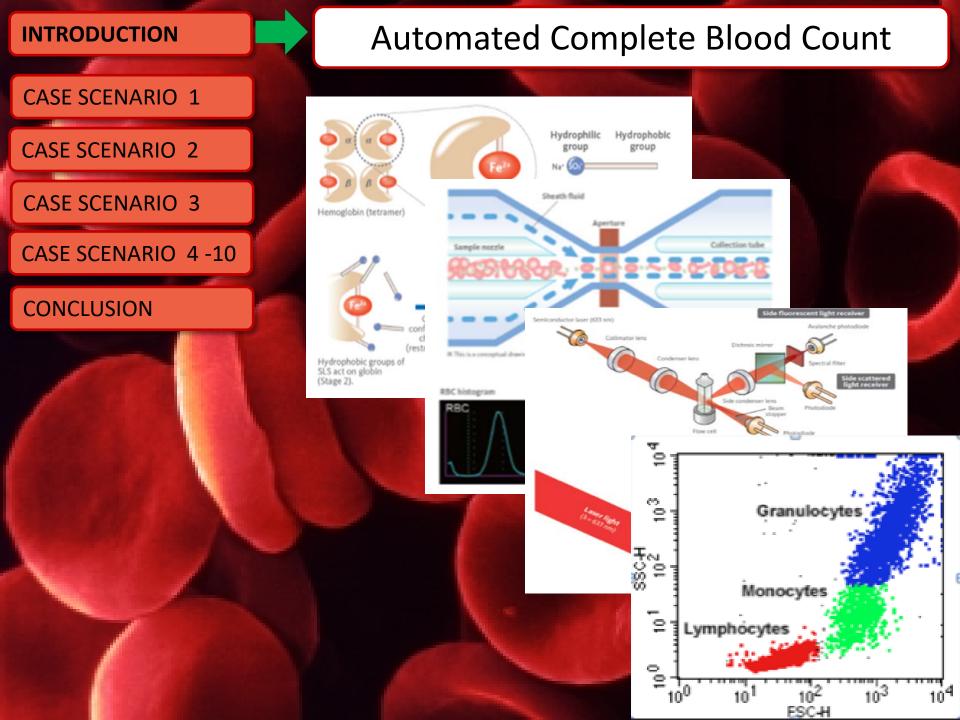


Dr Kyaw Zin Maw MBBS, MRCP(London), FRCPath(UK) Consultant Haematologist (MMPGA) August 1st, 2020

CASE SCENARIO 1


CASE SCENARIO 2


CASE SCENARIO 3

CASE SCENARIO 4-10

CONCLUSION

Automated Complete Blood Count

28/02/2017

09:17:37

SML

Sample No.:

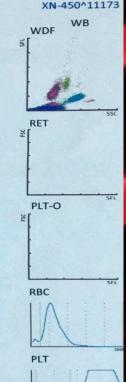
CASE SCENARIO 1

CASE SCENARIO 2

CASE SCENARIO 3

CASE SCENARIO 4-10

CONCLUSION


Patient ID: 170210745 Doctor: SELF Name: Sex: Male 31 Age: Diff. Morph. Count Reference Interval WBC 19.78 + [10³/uL] (4.00 - 10.50)NEUT 50.9 * [%] 10.07* [10^3/uL] 40.0 - 75.0) (1.50 - 6.60)38.5 * [%] LYMPH 7.62* [10^3/uL] (1.50 - 3.50)20.0 - 50.0) MONO 5.0 * [%] 0.98* [10^3/uL] 0.00 - 1.00) 2.0 - 10.0) EO 0.6 * [%] 0.12* [10^3/uL] 0.00 - 0.70)1.0 - 6.0) **BASO** 5.0 * [%] 0.99* [10^3/uL] 0.00 - 0.10)0.0 - 1.0) IG 0.3 * [%] 0.05* [10^3/uL] (0.00 - 7.00)(0.0 - 72.0)RBC 4.00 * [10^6/uL] 4.70 - 6.00) HGB 7.9 - [g/dL] 13.5 - 18.0) 24.4 * [%] HCT 42.0 - 52.0) MCV 61.0 * [fL] 78.0 - 100.0) 19.8 * [pg] MCH 27.0 - 31.0) 32.4 * [g/dL] MCHC 32.0 - 36.0) 62.1 * [fL] RDW-SD 36.4 - 46.3) **RDW-CV** 29.0 * [%] 11.5 - 14.0) PLT 238 * [10^3/uL] 150 - 450) PDW 8.0 - 18.0) [fL] MPV 6.0 - 9.5)P-LCR [%] 13.0 - 43.0) PCT [%] 0.20 - 0.50)[10^6/uL] 0.40 - 1.00) (0.0000 - 0.9999)RET IRF [%] 0.0 - 100.0)LFR [%] [%] 0.0 - 100.0)MFR 0.0 - 100.0)[%] 0.0 - 100.0**HFR** 0.0 - 99.9)RET-He [pg] [10³/uL] 0.0 - 99.9(0.0 - 999.9)**IPF**

Ward:

WBC IP Message
WBC Abn Scattergram
Lymphocytosis
Basophilia
Leukocytosis
Blasts/Abn Lympho?

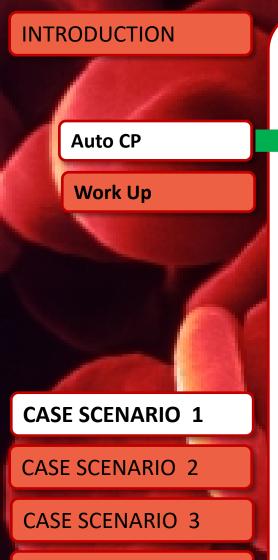
RBC IP Message
RBC Abn Distribution
Anisocytosis
Microcytosis
Anemia
Fragments?

PLT IP Message
PLT Abn Distribution

Blood Film Report

NRBC?

RBC: anisopoikilocytosis with hypochromia, microcytes


elliptical cells+, target cells+, fragmented cells+, nucleated RBC+20/100 WBCs

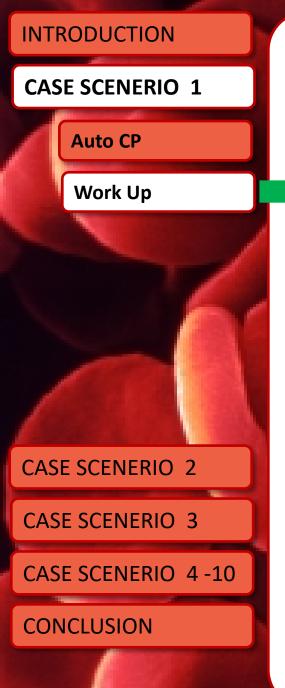
WBC: leucocytosis with normal differential count

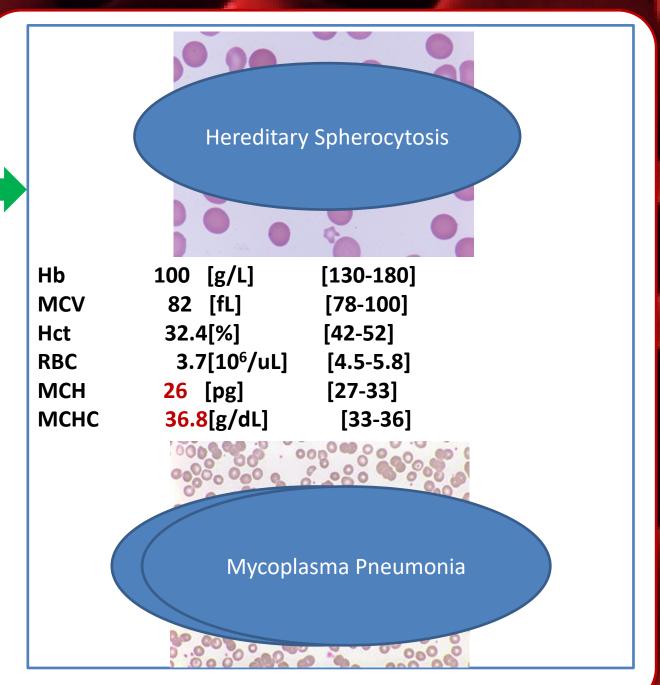
PROFESSON AYE AYE MYINT
M.B.,B.S, D.P (YGN)
Ph.D(London), Ph.D (HON)(YGN)
Consultant Pathologist

02 (2017 00:17)

PLT : normal,clumps+

CASE SCENARIO 4


CONCLUSION


Hb	100 [g/L]	[130-180]
MCV	82 [fL]	[78-100]
Hct	32.4[%]	[42-52]
RBC	3.7[10 ⁶ /uL]	[4.5-5.8]
MCH	26 [pg]	[27-33]
MCHC	36.8[g/dL]	[33-36]
RDW-SD	42 [fL]	[36.4-46.3]
RDW-CV	13.6[%]	[11.6-14.0]
NRBC	-	
RET	108 [x10 ⁶ /L]	[40-100]
RET-He	33 [pg]	[28-36]
IRF	13.4[%]	[1.6-12.1]

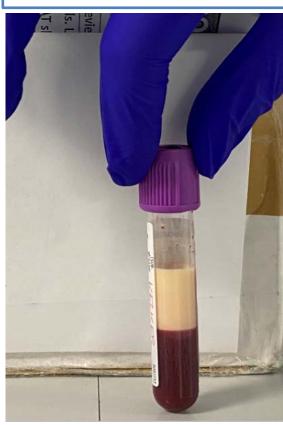
MCH = Average Hb concentration of the average cell (Hb / RBC)

MCHC = Average Hb concentration of a given red cell volume (Hb / Hct)

MCH (Mean Corpuscular Haemoglobin)
MCHC (Mean Corpuscular Haemoglobin Concentration)

CASE SCENERIO 1.1

Auto CP


CASE SCENERIO 2


CASE SCENERIO 3

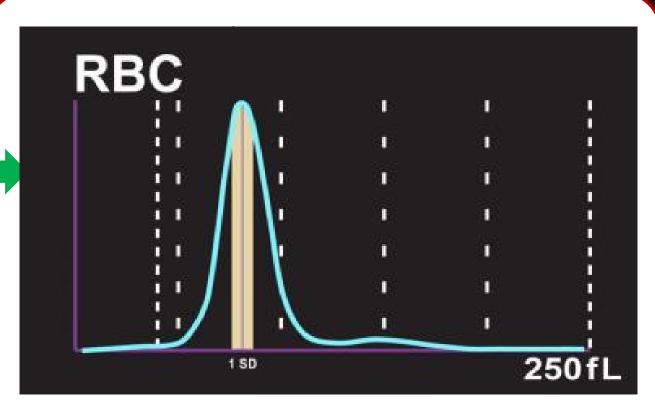
CASE SCENERIO 4

CONCLUSION

150 [g/L] Hb [130-180] 83.3 [fL] [78-100] **MCV** 43.8 [%] Hct [42-52] 5.1[10⁶/uL] [4.5-5.8] **RBC** [27-33] **MCH** 29.7 [pg] 48.1 [g/dL] [33-36] **MCHC**

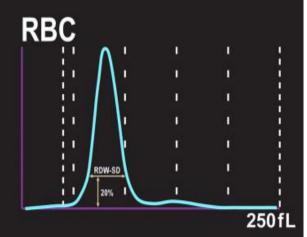
CASE SCENERIO 1

Auto CP

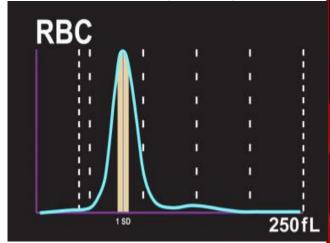

Work Up

CASE SCENERIO 3

CASE SCENERIO 4-10


CONCLUSION

- **RDW-SD** Red Cell Distribution Width Standard Deviation
 - Actual measurement of the width of the RBC size distribution histogram
 - 20% height level of the histogram
- **RDW-CV** Red Cell Distribution Width Coefficient of Variation
 - Calculated from standard deviation and MCV
 - RDW-CV(%) = 1 SD of RBC volume / MCV x 100%
 - Can be effected by MCV


INTRODUCTION CASE SCENERIO 1 **CASCENERIO 2 Auto CP Work Up** CASE SCENERIO 3 CASE SCENERIO 4 **CONCLUSION**

RDW-SD (38.2fL)

Difference at 20% Height level

RDW-CV (12.8%)

1SD/MCV x 100%

RDW - Reflects Variation in RBC size and volume (Anisocytosis)

Elevated RDW – Early nutritional deficiency (Iron, B₁₂, Folate)

- Fragmentation
- Agglutination
- Dimorphic population
- Marked anisocytosis

MCV

Normal RDW - Mild or no anisocytosis (Uncomplicated heterozygous thalassaemia)

INTRODUCTION CASE SCENERIO 1 **CASCENERIO 2 Auto CP** Work Up CASE SCENERIO 3 CASE SCENERIO 4-10 **CONCLUSION**

Hb	112 [g/L]	[130-180]	- 112
MCV	68 [fL]	[78-100]	- 72
Hct	32.4[%]	[42-52]	- 30.2
RBC	4.8[10 ⁶ /uL]	[4.5-5.8]	- 3.3
MCH	25 [pg]	[27-33]	- 26
MCHC	28.8[g/dL]	[33-36]	- 26.8
RDW-SD	40 [fL]	[36.4-46.3]	- 48.4
RDW-CV	13 [%]	[11.6-14.0]	- 17.6
NRBC	-		
RET	108 [x10 ⁶ /L]	[40-100]	- 50
RET-He	33 [pg]	[28-36]	- 25
IRF	13.4[%]	[1.6-12.1]	- 6.5

Uncomplicated heterozygous thalassaemia

Iron deficiency anaemia

INTRODUCTION CASE SCENERIO 1 **CASCENERIO 2 Auto CP** Work Up CASE SCENERIO 3 CASE SCENERIO 4-10 **CONCLUSION**

Hb	102 [g/L]	[130-180]	- 102
MCV	68 [fL]	[78-100]	- 72
Hct	32.4[%]	[42-52]	- 30.2
RBC	4.8[10 ⁶ /uL]	[4.5-5.8]	- 3.8
MCH	25 [pg]	[27-33]	- 26
MCHC	28.8[g/dL]	[33-36]	- 26.8
RDW-SD	42 [fL]	[36.4-46.3]	- 48.4
RDW-CV	17.6[%]	[11.6-14.0]	- 17.6
NRBC	-		
RET	108 [x10 ⁶ /L]	[40-100]	- 50
RET-He	33 [pg]	[28-36]	- 25
IRF	13.4[%]	[1.6-12.1]	- 6.5

RDW Index (RDWI):

MCV x RDW-CV / RBC

>220 Iron deficiency anaemia

<220 Thalassaemia trait

INTRODUCTION CASE SCENERIO 1

CASE SCENERIO 2

Auto CP

Work Up

CASE SCENERIO 3

CASE SCENERIO 4-10

CONCLUSION

RDW

- Iron deficiency anaemia
- Sickle cell-β thalassaemia
- Early haematinic deficiency
- Dimorphic anaemia
- Myelodysplasia
- Sickle cell disease
- Chronic liver disease

- B12/Folate deficiency
- Haemolytic anaemia
- Myelodysplasia
- Cytotoxic chemotherpy
- Chronic liver disease

- Anaemia of chronic disease
- Heterozygous thalassaemia
- Haemoglobin E trait

- Anaemia of chronic disease
- Acute blood loss
- Acute haemolysis
- Renal anaemia

- Aplastic anaemia
- Cytotoxic chemotherapy
- Chronic liver disease
- Antiviral therapy
- Alcohol

CASE SCENERIO 1

CASESCENERIO 2

Auto CP

Work Up

CASE SCENERIO 3

CASE SCENERIO 4-10

CONCLUSION

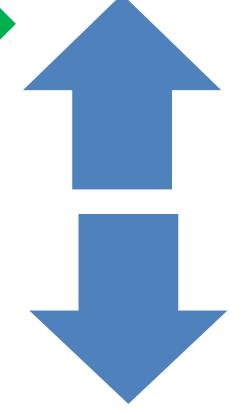
Hb	102 [g/L]	[130-180]	
MCV	83 [fL]	[78-100]	
Hct	32.4[%]	[42-52]	
RBC	3.2[10 ⁶ /uL]	[4.5-5.8]	
MCH	26 [pg]	[27-33]	
MCHC	28.8[g/L]	[33-36]	
RDW-SD	45 [fL]	[36.4-46.3]	
RDW-CV	14.6[%]	[11.6-14.0]	
NRBC	-		
RET	65 [x10 ⁶ /L]	[40-100]	
RET-He	23 [pg]	[28-36]	≈ CHr
IRF	3.8 [%]	[1.6-12.1]	

RET – Reticulocyte Count

RET-He - Reticulocyte Haemoglobin Equivalent

CHr - Mean Reticulocyte Haemoglobin Content

IRF - Immature Reticulocyte Fraction


INTRODUCTION CASE SCENERIO 1 CASE SCENERIO 2 **CASE SCENERIO 3 Auto CP Work Up**

CASE SCENERIO 4-10

CONCLUSION

Reticulocyte Count:-

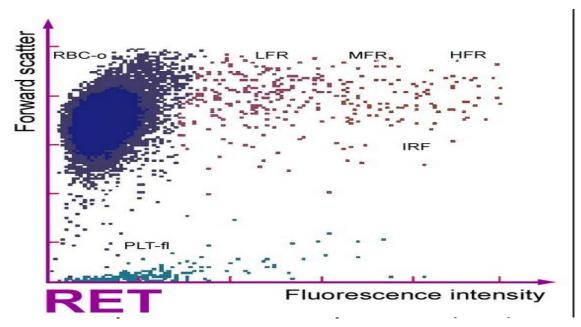
- Absolute Reticulocyte Count
- General ↓ in production problem
 - 个in increased destruction
- Results varies (e.g, stress marrow)
- Reticulocyte Production Index (RPI) /
 Corrected Reticulocyte Percentage more reliable

- Acute Blood Loss
- Acute Haemolysis
- Marrow response to therapy

- Marrow Failure / Infiltration
- Haematinic deficiency
- Post chemo/radiation

CASE SCENERIO 1

CASE SCENERIO 2


CASE SCENERIO 3

Auto CP

Work Up

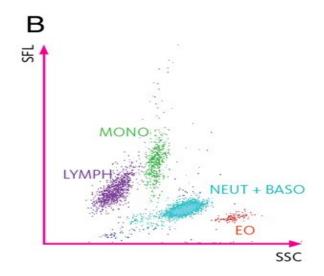
CONCLUSION

<u>Immature Reticulocyte Fraction (IRF):-</u>

- Quantitative measurement of RNA content of reticulocyte
- (Low +) Middle + High-florescence reticulocytes
- Useful assessment for evaluation of marrow recovery and to assess for effective erythropoiesis:
 - e.g Post iv iron therapy
 - EPO response assessment

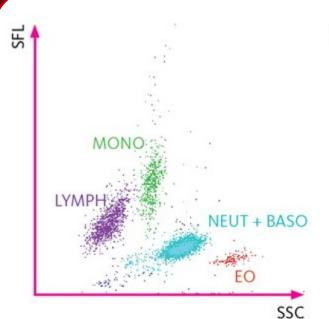
INTRODUCTION CASE SCENERIO 1 CASE SCENERIO 2 **CASE SCENERIO 3 Auto CP** Work Up CASE SCENERIO 4-10 **CONCLUSION**

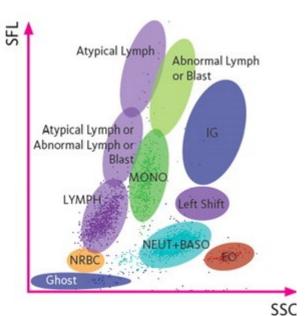
Hb	102 [g/L]	[130-180]		
MCV	83 [fL]	[78-100]		
Hct	32.4[%]	[42-52]		
RBC	3.2[10 ⁶ /uL]	[4.5-5.8]		
MCH	26 [pg]	[27-33]		
MCHC	28.8[g/dL]	[33-36]		
RDW-SD	45 [fL]	[36.4-46.3]		
RDW-CV	14.6[%]	[11.6-14.0]		
NRBC	-			
RET	65 [x10 ⁶ /L]	[40-100]		
RET-He	23 [pg]	[28-36]	\leftrightarrow	CHr
IRF	3.8 [%]	[1.6-12.1]		


Ferritin 230
Transferrin saturation 10%

Functional Iron Deficiency

INTRODUCTION CASE SCENERIO 1 CASE SCENERIO 2 CASE SCENERIO 3 **Auto CP Work Up CASE SCENERIO 4**


CONCLUSION


Hb 125 [g/L] [130-180] **MCV** 97 [fL] [78-100] Hct 32.4[%] [42-52] **WBC** 22.8[10⁶/uL] [4.0-10.50] 18.6[10⁶/uL] Neu [1.50-6.60] 2.1[10⁶/uL] [1.50-3.50] Lym $0.6[10^6/uL]$ [0.00-0.50]Eosin $0.9[10^6/uL]$ [0.00-0.08]Baso Mono 0.8[10⁶/uL] [0.05-0.10]450[10⁶/uL] **Platelet** [150-450] [7.8-9.2] **MPV** 8.7[fL]

INTRODUCTION CASE SCENERIO 1 CASE SCENERIO 2 CASE SCENERIO 3 **CASE SCENERIO 4 Auto CP Work Up**

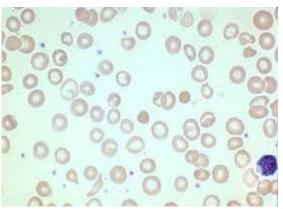
CONCLUSION

Hb 125 [g/L] [130-180] 97 [fL] [78-100] **MCV** 32.4[%] [42-52] Hct 22.8[10⁶/uL] **WBC** [4.0-10.50] 18.6[10⁶/uL] [1.50-6.60] Neu 2.1[10⁶/uL] [1.50-3.50] Lym $0.6[10^6/uL]$ [0.00-0.50]**Eosin** $0.9[10^6/uL]$ [0.00-0.08]Baso $0.8[10^6/uL]$ Mono [0.05-0.10]**Platelet** 450[10⁶/uL] [150-450] **MPV** 8.7[fL] [7.8-9.2]

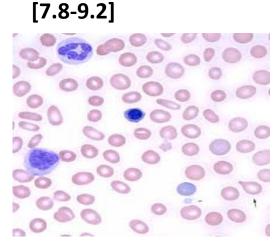
CASE SCENERIO 1

CASE SCENERIO 2

CASE SCENERIO 3


CASE SCENERIO 5

Auto CP


Work Up

CONCLUSION

86 [g/L] Hb **MCV** 75 [fL] Hct 24.4[%] 14.8[10⁶/uL] **WBC** 8.6[10⁶/uL] Neu 2.1[10⁶/uL] Lym $0.1[10^6/uL]$ Eosin $0.1[10^6/uL]$ **Baso** $0.1[10^6/uL]$ Mono 480[10⁶/uL] **Platelet MPV** 8.7[fL]

Iron deficiency anaemia

[130-180]

[42-52]

[78-100]

[4.0-10.50]

[1.50-6.60]

[1.50-3.50]

[0.00-0.50]

[0.00-0.08]

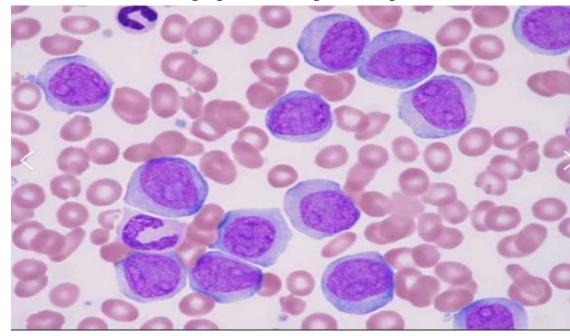
[0.05-0.10]

[150-450]

Myelofibrosis

CASE SCENERIO 1

CASE SCENERIO 2


CASE SCENERIO 3

CASE SCENERIO 6

Auto CP

CONCLUSION

Hb	86 [g/L]	[130-180]
MCV	90 [fL]	[78-100]
Hct	24.4[%]	[42-52]
WBC	14.8[10 ⁶ /uL]	[4.0-10.50]
Neu	1.6[10 ⁶ /uL]	[1.50-6.60]
Lym	2.1[10 ⁶ /uL]	[1.50-3.50]
Eosin	0.1[10 ⁶ /uL]	[0.00-0.50]
Baso	0.1[10 ⁶ /uL]	[80.0-0.08]
Mono	10.6[10 ⁶ /uL]	[0.05-0.10]
Platelet	78 [10 ⁶ /uL]	[150-450]
MPV	8.7[fL]	[7.8-9.2]

INTRODUCTION Hb 125 [g/L] [130-180] **MCV** 97 [fL] [78-100] CASE SCENERIO 1 32.4[%] Hct [42-52] 22.8[10⁶/uL] **WBC** [4.0-10.50] CASE SCENERIO 2 18.6[10⁶/uL] [1.50-6.60] Neu 2.1[10⁶/uL] [1.50-3.50] Lym CASE SCENERIO 3 [0.00-0.50]**Eosin** $0.6[10^6/uL]$ **CASE SCENERIO 7** $0.9[10^6/uL]$ [0.00-0.08]**Baso** $0.8[10^6/uL]$ [0.05-0.10] Mono **Auto CP** 35 [10⁶/uL] **Platelet** [150-450] **MPV** 8.5 [fL] [7.8-9.2] **Work Up** Sheath fluid Collection tub Sample nozzle **CONCLUSION**

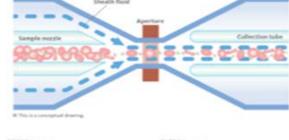
CASE SCENERIO 1

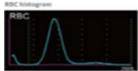
CASE SCENERIO 2

CASE SCENERIO 3

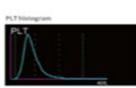
CASE SCENERIO 8

Auto CP

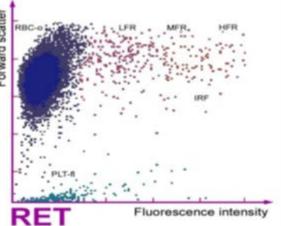

Work Up


CONCLUSION

Hb 125 [g/L] **MCV** 97 [fL] Hct 32.4[%] 10.8[10⁶/uL] **WBC** 6.6[10⁶/uL] Neu 2.1[10⁶/uL] Lym **Eosin** $0.2[10^6/uL]$ $0.0[10^6/uL]$ **Baso** 0.7[10⁶/uL] Mono 35 [10⁶/uL] **Platelet MPV**


11.8 [fL]

[130-180] [78-100] [42-52] [4.0-10.50] [1.50-6.60] [1.50-3.50] [0.00-0.50][0.00-0.08][0.05-0.10][150-450]



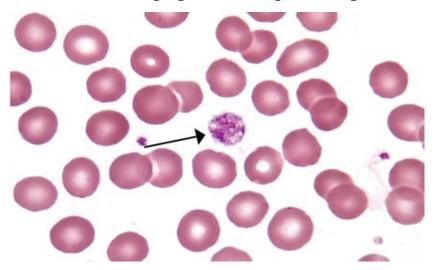
Impendence count

Optical count

CASE SCENERIO 1

CASE SCENERIO 2

CASE SCENERIO 3


CASE SCENERIO 9

Auto CP

Work Up

CONCLUSION

Hb	125 [g/L]	[130-180]
MCV	97 [fL]	[78-100]
Hct	32.4[%]	[42-52]
WBC	10.8[10 ⁶ /uL]	[4.0-10.50]
Neu	6.6[10 ⁶ /uL]	[1.50-6.60]
Lym	2.1[10 ⁶ /uL]	[1.50-3.50]
Eosin	0.2[10 ⁶ /uL]	[0.00-0.50]
Baso	0.0[10 ⁶ /uL]	[80.00-0.08]
Mono	0.7[10 ⁶ /uL]	[0.05-0.10]
Platelet	35 [10 ⁶ /uL]	[150-450]
MPV	11.8 [fL]	[7.8-9.2]

Peripheral destruction

INTRODUCTION CASE SCENERIO 1 CASE SCENERIO 2 CASE SCENERIO 3 CASE SCENERIO 10 **Auto CP** Work Up **CONCLUSION**

Hb	43.3 [g/L]	[130-180]
MCV	93.4 [fL]	[78-100]
Hct	28 [%]	[42-52]
WBC	721.x [10 ⁶ /uL]	[4.0-10.50]
Neu	4.24[10 ⁶ /uL]	[1.50-6.60]
Lym	676.x[10 ⁶ /uL]	[1.50-3.50]
Eosin	0.00[10 ⁶ /uL]	[0.00-0.50]
Baso	0.00[10 ⁶ /uL]	[0.00-0.08]
Mono	40.7[10 ⁶ /uL]	[0.05-0.10]
Platelet	133 [10 ⁶ /uL]	[150-450]
MPV	6.7[fL]	[7.8-9.2]

Any Comment?

INTRODUCTION CASE SCENERIO 1 CASE SCENERIO 2 CASE SCENERIO 3 **CASE SCENERIO 4** CONCLUSION

SUMMARY:

- 1. Many information can be available from modern automated blood count report.
- 2. Each blood cells parameter is valuable in the approach of blood cells abnormality.
- 3. Correct diagnosis can be reached through the parallel information.
- 4. Understanding of laboratory principles and factors affecting the AUTOMATED results.
- 5. Importance of Quality Control System
- 6. One more important thing in the approach of anaemia
 - → Blood Film Morphology

